
Hunting Bugs

In Multithread C Programs

Omar Inverso University of Southampton, UK

Ermenegildo Tomasco University of Southampton, UK

Bernd Fischer Stellenbosch University, South Africa

Salvatore La Torre Università di Salerno, Italy

Gennaro Parlato University of Southampton, UK

Finding Bugs in Software

• testing is still the most used approach in industry

• can be slow, expensive, resource-consuming

• no confidence that there are no missed bugs, or no bugs at all

• manual source-code inspection can spot very subtle bugs

• inefficient, error-prone, unfeasible on big programs

• automatic source-code analysis is generally undecidable [Church 1936] [Turing 1936]

• approximation: missed bugs vs false positives

• restrictions: focus on specific classes of programs and specific checks

 (array bounds, division-by-zero, assertion violation, …)

Finding Bugs in Software

• testing is still the most used approach in industry

• can be slow, expensive, resource-consuming

• no confidence that there are no missed bugs, or no bugs at all

• manual source-code inspection can spot very subtle bugs

• inefficient, error-prone, unfeasible on big programs

• automatic source-code analysis is generally undecidable [Church 1936] [Turing 1936]

• approximation: missed bugs vs false positives

• restrictions: focus on specific classes of programs and specific checks

 (array bounds, division-by-zero, assertion violation, …)

we focus on

automatic analysis of

 multithread C programs 

(reachability + assertion violation)

Multithread Programs

global memory

…
local

memory

T1

local

memory

T2

local

memory

Tn

• harder development

• thread interference must be considered

• concurrency introduces further errors (e.g. deadlock)

• harder analysis

• #interleavings exponential in (#threads x #statements)

• testing not effective

• gap with tools for sequential programs

Multithread Programs

global memory

…
local

memory

T1

local

memory

T2

local

memory

Tn

Sequentialization

sequential

analysis

translation

sequential

program

concurrent

program

Sequentialization

• convenience

• re-use industrial-strength existing tools as backends

• fast prototyping (designers can concentrate on concurrency)

• can work with different backends

sequential

analysis

translation

sequential

program

concurrent

program

Sequentialization

• known sequentializations

• initially proposed for up to 2 context-switches [Qadeer,Wu PLDI2004]

• generalised to k round-robin context-switches [Lal,Reps CAV2008]

• no dynamic memory allocation, dynamic thread creation, limited backend integration

• implemented for C programs [Lahiri,Qadeer,Rakamaric CAV2009] [Fischer,Inverso,Parlato ASE2013]

• k context-switches, lazy sequentialization [La Torre,Madhusudan,Parlato CAV2009]

• not good for bounded model-checking backends

• implemented for Boolean programs

sequential

analysis

translation

concurrent

program

sequential

program

Sequentialization

• known sequentializations

• initially proposed for up to 2 context-switches [Qadeer,Wu PLDI2004]

• generalised to k round-robin context-switches [Lal,Reps CAV2008]

• no dynamic memory allocation, dynamic thread creation, limited backend integration

• implemented for C programs [Lahiri,Qadeer,Rakamaric CAV2009] [Fischer,Inverso,Parlato ASE2013]

• k context-switches, lazy sequentialization [La Torre,Madhusudan,Parlato CAV2009]

• not good for bounded model-checking backends

• implemented for Boolean programs

 too many limitations both in the schema and in the tool 

sequential

program

concurrent

program

sequential

analysis

translation

is a bug reachable in program P within the given bounds?

• schema I: lazy context-bounded analysis (bounds no. of context-switches)

 Lazy-CSeq tool [Inverso,Tomasco,Fischer,La Torre,Parlato TACAS-SVCOMP2014,CAV2014]

• schema II: memory-unwinding (bounds no. of shared memory writes)

 MU-CSeq tool [Tomasco,Inverso,Fischer,La Torre,Parlato TACAS-SVCOMP2014]

CSeq Sequentialization Framework

non-deterministic

sequential

C program

P'

concurrent

C program

 P

CBMC

ESBMC

LLBMC

…

bounds backend

p1 pN
. . .

YES (+ error trace)

 NO

Schema I:

Lazy

Sequentialization

(Lazy-CSeq)

Lazy-CSeq Sequentialization

Translation P ↝ P':

• unwinding, inlining

• thread T ↝ function T'

• main driver:

 for round in [1..K]

 for thread in [1..N]

 T'thread ();

Lazy-CSeq Sequentialization

Translation P ↝ P':

• unwinding, inlining

• thread T ↝ function T'

• main driver:

 for round in [1..K]

 for thread in [1..N]

 T'thread ();

 Thread T ↝ function T'

• var x; ↝ static var x; // persistency

• stmt; ↝ guard; stmt; // context-switch

T'

guard; stmt;

Lazy-CSeq Sequentialization

Translation P ↝ P':

• unwinding, inlining

• thread T ↝ function T'

• main driver:

 for round in [1..K]

 for thread in [1..N]

 T'thread ();

T'

Thread simulation: round 1

• guess context-switch point p1

• execute stmts before p1

• jump in mult. hops to the end

Thread T ↝ function T'

• var x; ↝ static var x;

• stmt; ↝ guard; stmt;

 context-switch p1

 .
..

 .
..

simulation round 1

e
x
e

c

s
k
ip

Lazy-CSeq Sequentialization

Translation P ↝ P':

• unwinding, inlining

• thread T ↝ function T'

• main driver:

 for round in [1..K]

 for thread in [1..N]

 T'thread ();

Thread simulation: round i

• guess context-switch point pi

• execute stmts from pi-1 to pi

• jump in mult. hops to the end

Thread T ↝ function T'

• var x; ↝ static var x;

• stmt; ↝ guard; stmt;

simulation round i >1

T'

 context-switch pi

 .
..

 .
..

e

x
e

c

s
k
ip

s
k
ip

resume

Lazy-CSeq Example

concurrent

sequential

analysis on the sequential program:

• fast bug finding

• low memory usage

Schema II:

Memory-unwound

Sequentialization

(MU-CSeq)

Sequentialization of Concurrent Programs

Basic Idea:

convert concurrent programs into

equivalent sequential programs

Sequentialization of Concurrent Programs

Basic Idea:

Mu-CSeq Approach:

 Pc ↝ M : Ps
• M is a guessed sequence of write operations into the shared memory

• Ps simulates all executions compatible with M
 Simulates each thread s.t. its local computation is consistent with the memory sequence

convert concurrent programs into

equivalent sequential programs

Sequentialization of Concurrent Programs

Basic Idea:

Mu-CSeq Approach:

 Pc ↝ M : Ps
• M is a guessed sequence of write operations into the shared memory

• Ps simulates all executions compatible with M
 Simulates each thread s.t. its local computation is consistent with the memory sequence

Our analysis is bounded on the number of memory write operations

convert concurrent programs into

equivalent sequential programs

Memory Unwinding

x y ... z

“memory”

0 0 0 ...

Memory Unwinding

4 0 0

4 2 0

4 3 0

4 3 42

...

0 3 42

x y ... z

1

2

3

4

...

N

“memory”
pos

Guess and store sequence of individual write operations:

• add N copies of shared variables (“memory”)

 _memory[i,v] is value of v-th variable after i-th write

...

...

...

...

...

0 0 0 0 ...

Memory Unwinding

4 0 0

4 2 0

4 3 0

4 3 42

...

0 3 42

x y ... z

1 x

1 y

2 y

1 z

... ...

2 x

var

1

2

3

4

...

N

thr

“memory” “writes”
pos

Guess and store sequence of individual write operations:

• add N copies of shared variables (“memory”)

 _memory[i,v] is value of v-th variable after i-th write

• add array to record writes (“writes”)

 i-th write is by _thr[i], which has written to _var[i]

...

...

...

...

...

0 0 0 - - 0 ...

Basic Idea:

Simulation

simulate all executions compatible

with guessed memory unwinding

Basic Idea:

• uses auxiliary variables

– thread (id of currently simulated thread)

– pos (current index into unwound memory)

Simulation

simulate all executions compatible

with guessed memory unwinding

Basic Idea:

• uses auxiliary variables

– thread (id of currently simulated thread)

– pos (current index into unwound memory)

• every thread is translated into a function

• simulation starts from main thread

Simulation

simulate all executions compatible

with guessed memory unwinding

Basic Idea:

• uses auxiliary variables

– thread (id of currently simulated thread)

– pos (current index into unwound memory)

• every thread is translated into a function

• simulation starts from main thread

• each thread creation is translated into a function call

Simulation

simulate all executions compatible

with guessed memory unwinding

Basic Idea:

• every read / write is translated into a function call

Simulation

simulate all executions compatible

with guessed memory unwinding

Basic Idea:

• every read / write is translated into a function call

void write(uint var_name, int val) {

 pos=next_write(pos,thread);

 assume(_var[pos]== var_name

 && memory[pos, var_name]==val);

}

Simulating reads and writes

simulate all executions compatible

with guessed memory unwinding

Basic Idea:

• every read / write is translated into a function call

int read(uint var_name) {

 uint jmp=*;

 assume(jmp>=pos

 && jmp<next_write(pos,thread);

 pos=jmp;

 return _memory[pos, var_name];

}

Simulating reads and writes

simulate all executions compatible

with guessed memory unwinding

• Explicit representation of the memory

• Read and Write can be simulated using a constant number of steps

• “memory” size depends on the number of shared variables

Improvements

Evaluation

and

Future Work

Lazy-CSeq won the Gold Medal and

MU-CSeq won the Silver Medal

in the Concurrency category

• 76 concurrent C programs

 UNSAFE instances: 20 programs containing a bug

 SAFE instances: all the others

• 4,500 l.o.c.

1) Lazy-Cseq: 1,000s, 136pts

2) MU-Cseq: 1,200s, 136pts

3) CBMC: 29,000s, 128pts

Results:

• small analysis times

• no missed bugs!

Evaluation: SV-COMP2014

• concurrency models

 POSIX threads model Shared-Memory concurrency,

 we plan to add support Message Passing (MP) programs

• memory models

 so far we assumed Sequential Consistency (SC),

 we plan to extend to Weak Memory Models (WMM)

 used in modern computer architectures

• backend support

 we have achieved fast bug-hunting with bounded model-checkers,

 we have started some preliminary work to support abstraction-based backends as well.

Future Work

Thank You

users.ecs.soton.ac.uk/gp4/cseq

